Loading [MathJax]/extensions/tex2jax.js

Postagem em destaque

COMECE POR AQUI: Conheça o Blog Summa Mathematicae

Primeiramente quero agradecer bastante todo o apoio e todos que acessaram ao Summa Mathematicae . Já são mais de 100 textos divulgados por a...

Mais vistadas

Filosofia da Matemática em Aristóteles e S. Tomás - Introdução


RECEBA NOSSAS ATUALIZAÇÕES

DIGITE SEU EMAIL:

Verifique sua inscrição no email recebido.


Tempo de leitura: 12 minutos.

É com grande alegria que apresentamos uma tradução do Prólogo e da Introdução do livro La Filosofía de las Matemáticas en Santo Tomás, em traduzimos como A Filosofia da Matemática em Santo Tomás. Este livro foi escrito por José Alvarez Laso, C. M. F., Professor de Filosofia no Colégio Claretiano de Santa Cruz Zinacantepec. Foi publicado pelo Editorial Jus, México, 1952. Primeiramente quero agradecer a minha esposa pela tradução e revisão do texto em espanhol. As demais traduções são nossa. Futuramente teremos mais novidades deste livro. Aguardem!

PRÓLOGO 

Antes de entrar no assunto, convém citar aqui algumas advertências. E, primeiramente, para que ninguém ache que minha tese é um de tantos esforços para atribuir a Santo Tomás, sete séculos antes, o que agora dizemos, hei de explicar

A ocasião deste tema. Muitos matemáticos modernos e não poucos filósofos de todo tipo de escolas prestam grande atenção aos problemas filosóficos que a Matemática oferece, agrupados sob a denominação comum de Filosofia da Matemática.
Basta ler as últimas páginas da monografia de W. Dubislav, A filosofia da Matemática na Atualidade [Die Philosopie der Mathematik in der Gegenwart] (Berlín, 1932), para se convencer disso. 
Por outro lado, os escolásticos, esquecendo o exemplo dos grandes Mestres (veja a Conclusão), pouco ou nada fizeram neste campo estritamente metafísico. 
É, pois, este terreno como diz o P. Hoenen, Um campo de pesquisa para Escolástica (O Escolástico Moderno 12 [A field of research for Scholasticism (The Modern Schoolman 12)] [Nov. 1934] 15-18). 

Objeto desta pesquisa. Não é minha intenção propor uma filosofia da Matemática segundo a doutrina escolástica. Meu trabalho será mais modesto: colaborar com meu grãozinho de areia para este ideal preparando a história destes problemas na escolástica. 

Autor escolhido. E para sintetizar, na medida do possível, esta história, escolhi como autor central Santo Tomás de Aquino, que representa melhor que nenhum outro a doutrina escolástica. Ele reuniu toda a ciência anterior e dele derivam mais ou menos todos os Escolásticos posteriores. Por isso, creio que as 
Fontes principais deste trabalho devem ser os Comentários do Angélico aos livros do Estagirita [Aristóteles]. Assim, poderemos estudar paralelamente o pensamento do Filósofo e de seu melhor intérprete. Uma consequência prática é a maneira de citar ambas as referências o mais preciso possível. Somente os que quiseram consultar alguma vez o pensamento de Santo Tomás com os outros Comentadores antigos e modernos, verão a utilidade destas citações. 

Características do meu trabalho. Assim, pois, meu trabalho é primariamente histórico. Apresentar as soluções que Santo Tomás deu aos problemas que oferecia a matemática de seu século.
Em segundo lugar, meu trabalho deve ser crítico. Em dois sentidos: primeiro em relação aos problemas que o próprio Santo Tomás se propunha: estão plenamente resolvidos?; logo, em relação aos problemas de agora, as soluções tomistas podem ser aplicadas a eles? 

Método seguido. Eu segui o método histórico e documental, pesquisando o que de fato disse Santo Tomás. Método diametralmente oposto ao que segue D. García em seu artigo De metaphysica multitudinis ordinatione (Div. Thom. Plac. 31 [1928] 83-109; 607-638). [Sobre a metafísica da ordem do número].

Uso dos idiomas. O método documental exige a menor intervenção possível do pesquisador nos textos. Por isso, embora o texto da dissertação esteja na minha língua materna [espanhol], as citações estão sempre nos idiomas dos respectivos autores. 
É lamentável ter que dizer, mas é um fato, cito autores em nove línguas diferentes e nenhum em espanhol. 
Para maior comodidade, o índice de referências está em latim.


Divisão da tese. Fiz um esquema quase a priori sobre os problemas filosóficos que a Matemática oferece para ordenar, segundo ele, os materiais que estivesse recolhendo, mas logo tive a sorte de encontrar um belo texto de Santo Tomás que me deu uma magnífica divisão da matéria, segundo exponho no primeiro capítulo. 

A bibliografia que aparece nas páginas seguintes compreende, sistematicamente catalogados, todos e apenas os livros e artigos empregados para compor a dissertação. 

Fruto da minha pesquisa. Creio que o mérito principal do meu trabalho está em ter encontrado em Santo Tomás um esboço de Filosofia da Matemática, que é necessário desenhar e colorir com muito cuidado para poder apresentá-lo diante do público de nossos dias. 

Defeitos da minha dissertação. Certamente, terão muitos a serem delatados ao principiante. Mas, há três que eu mesmo vejo e que quero confessar aqui. 
Facilmente se nota que os últimos capítulos estão menos trabalhados, embora em parte se deva ao fato de que são menos filosóficos. 
Logo, teria que ler de novo todos os textos, para referendar mais a doutrina. Conheço mais textos dos que aparecem usados na dissertação como facilmente poderá constatar quem tivesse paciência para comparar o texto com o Apêndice. Talvez, em algum momento, teria que corrigir alguma frase ou polir alguma expressão, como tive que fazer em relação ao número. Na primeira redação, atribuía a Santo Tomás uma doutrina errônea sobre o objeto da aritmética, que depois tive a satisfação de constatar que era apenas de João de Santo Tomás e de outros que o copiavam (veja a nota 29 do cap. III). 
Por fim, em relação à matemática moderna, é vasta e tão variada a literatura, que não sei se terei escolhido sempre o que é típico e característico.

Devo manifestar minha sincera gratidão e reconhecimento ao R. P. Pedro Hoenen, S.J., sob cuja amável e sábia direção trabalhei. 
Devo recordar aqui a memória do falecido R. P. L. W. Keeler (que Deus o tenha), que tanto me ajudou na leitura dos Manuscritos. Que o bom Deus, para cuja maior glória trabalhávamos juntos na Biblioteca Vaticana, lhe tenha agraciado no céu por sua extrema bondade para comigo. 

México, D. F., 13 de abril de 1952, solenidade de Páscoa. 


INTRODUÇÃO 

A MATEMÁTICA EM SANTO TOMÁS 

Santo Tomás estudou a Aritmética e a Geometria com as demais disciplinas do Quadrivium na Universidade de Nápoles [1] nos anos de 1236 a 1239 [2].
Tão bem diligente sairia destas aulas, à medida que se abundam em suas obras filosóficas e teológicas as alusões à Matemática [3]. 
Não é minha intenção estudar esta introdução um ponto [4], que não tem nenhum interesse nem para a Matemática nem para a História [5]. 
Só quero registrar os dados necessários para demonstrar que Santo Tomás poderia refletir sobre a Matemática. 
Conhecia bem [6] Euclides [7]. Poucas vezes cita [8] a aritmética de Boécio [9]; mas todos sabem que os livros VII-IX de Euclides são pura aritmética. 
Sabido é também o lugar que ocupa a Matemática na classificação geral das ciências que faz Santo Tomás [10]. 
Quero encerrar esta breve nota com uma frase do grande historiador da Matemática M. Cantor, que demonstra o grande afeto e admiração que professava por Tomás de Aquino: “O matemático chama-os (Alberto Magno e Tomás de Aquino) com pesar de amigos da sua ciência” (Vorlesungen über Geschichte der Mathematik [Lições sobre a história da matemática], Leipzig, Teubner, 1892, vol. II, p. 86).

Notas:

[1] Veja os parágrafos em que os três primeiros biógrafos de Santo Tomás falam de seus estudos em Nápoles: 
O pai enviou seu filho a Nápoles para que ele pudesse ser completamente educado em gramática, dialética e retórica. Pois quando ele logo deixou Martinho, seu tutor de gramática, ele foi entregue ao seu professor Pedro, o Ibérico, que, tendo-o instruído em ciências lógicas e naturais”. Calo P., Vita S. Thomae A., ed. Prümmer, p. 20. 
Assim, seguindo o conselho dos pais, o menino foi enviado para Nápoles e aprendeu gramática e lógica com o Mestre Martinho, e ciências naturais com o Mestre Pedro da Ibéria.”. Tocco G., Historia B. Thomae de Aq., ed. Prümmer, p. 70. 
Em pouco tempo, portanto, quando ele fez grande progresso em gramática, lógica e filosofia natural...”. Guidonis B., Legenda Sancti Thomae de Aq., ed. Prummer, p. 70. 

[2] El P. Prümmer (Chronología vitae S. Thomae Aq., en Xenia Thomistica) atribui o ano 1235 como o primeiro ano de sua estadia em Nápoles. P. Walz (Delineatio vitae S. Thomae de Aquino, Romae, Angelico, 1927, p. 16) coloca "anno 1236 vel 1239". 

[3] Veja o índice dos lugares em que Santo Tomás fala de Matemática, posto como Apêndice desta dissertação. 

[4] Do ponto de vista sistemático, H. Meyer estudou este ponto em vários artigos de Philosophisches Jahrbuch publicados à parte depois. Sobre a Matemática, trata o volume 47 (1934) nas páginas 441-464. 

[5] Talvez, o nome de Santo Tomás deva figurar na história da Matemática outro conceito. Veja, de fato, o que diz Timerding (Die Verbreitung mathematisches Wissens und mathematischer Auffassung, Leipzig, Teubner, 1914 [A disseminação do conhecimento matemático e da compreensão matemática]):
Além da já mencionada tradução de Euclides por Campanus, devem ser mencionadas as traduções que, segundo consta, foram feitas por Guilherme de Mörbecke da Catóptrica de Heron e dos escritos arquimedianos a pedido de Tomás de Aquino (1274)”. Zeuthen (Die Mathematik in Altertum und im Mittelalter, Leipzig, Teubner, 1912 [A Matemática na Antiguidade e na Idade Média]), atribui este mérito a Witelo. Veja Cantor, Vorlesunger über Geschichte der Mathematik, Leipzig, Teubner, 1892, Vol. II, p. 89.

[6] Veja, por exemplo, estes textos:

Explica o nome Elemento

III Met. 1.8, n. 424.

  “                “             “

V Met. 1.4, n. 801.

Cita o livro I de Euclides

III De An. 1.1, n. 577.

               III

II De cae 1.26. n. 6. 

                 IV

    De mem 1.7, n. 392

                 X

I An. Pos. 1.4, n. 13



[7] Segundo Montucla (Histoire des Mathématiques, Paris, 1758, I, p. 213), só no século XIII começaram os latinos a conhecer Euclides no mesmo texto.

[8] Veja, por exemplo: 
                    De pot. q. 3, a. 16 sed contra 4. 
                    I Sent. d. 24; q. 1 ob. 2. 
                    De Trin. q. 1. a. 4 ad 2. 
                            q. 4 á. 1 arg. 1. 

[9] Veja o juízo que faz Montucla (vol. I, p. 492), das obras matemáticas de Boécio: 
Sua aritmética e geometria são, estritamente falando, apenas traduções livres do primeiro (Nicômaco) e do último (Euclides), onde ele preservou para nós muitas características interessantes da história dessas ciências”.

[10] Veja, por exemplo, no recente livro de H. Meyer, Thomas von Aquino, Bonn, 1938, p. 399-407. 

***

Leia mais em Filosofia Tomista da Matemática

Leia mais em Aristotelismo e Filosofia da Matemática



Curta nossa página no Facebook Summa Mathematicae

Nossa página no Instagram @summamathematicae e YouTube.


 


Nenhum comentário:

Postar um comentário

Total de visualizações de página

31,360