Iluminura do Livro de Jogos, obra do scriptorium de Afonso X. A imagem mostra três copistas trabalhando. |
RECEBA NOSSAS ATUALIZAÇÕES
DIGITE SEU EMAIL:
Verifique sua inscrição no email recebido.
Tempo de leitura: 18 min.
Trecho retirado do livro Uma História da Matemática da Florian Cajori, publicado pela Editora Ciência Moderna, em 2007.
A Europa durante a Idade Média
Com o terceiro século depois de Cristo começou uma era de migração de nações na Europa. Os poderosos godos abandonaram os seus pântanos e florestas no norte e, em marcha constante em direção ao sul, desalojaram os vândalos, os suecos, e os borgonheses. Cruzando o território romano, pararam e recuaram somente quando alcançaram as praias do Mediterrâneo. Dos Montes Urais, hordas selvagens varreram as terras até o Danúbio, o Império Romano caiu em pedaços indicando a Idade das Trevas. Embora possa parecer tenebroso, foram eles os responsáveis pela criação das instituições e das nações da Europa Moderna. Assim como os gregos e os hindus foram os grandes pensadores da antiguidade, o mesmo também se aplica aos povos latinos, que foram o embrião de um forte e luxuriante acontecimento, ou seja, as modernas civilizações do norte dos Alpes e a da Itália passaram a ser os grandes líderes dos tempos modernos.
INTRODUÇÃO À MATEMÁTICA DOS ROMANOS
Consideraremos agora como as nações do norte, ainda bárbaras, gradualmente conseguiram se apossar dos tesouros intelectuais da antiguidade. Com a expansão do cristianismo, a língua latina foi introduzida não só eclesiástica, como também cientificamente em todas as importantes transações mundiais. Naturalmente a ciência da Idade Média foi largamente extraída das fontes latinas. Com isto, durante os primeiros tempos da Idade Média os autores romanos eram os únicos escritores lidos no Ocidente. Embora o grego não fosse totalmente desconhecido, mesmo assim, antes do século XIII nenhum trabalho grego foi lido ou traduzido para o latim. Por ser na verdade escassa a ciência de que se poderia extrair dos escritores romanos, tivemos de esperar vários séculos antes que qualquer progresso matemático fosse feito.
Depois da época de Boécio e Cassiodório [Cassiodoro], a atividade matemática Itália morreu completamente. O primeiro tênue sopro de ciência entre as tribos que vieram do norte foi uma enciclopédia intitulada Orígenes [Etimologias], escrita por Isidoro (morto em 636 como bispo de Sevilha). Este trabalho é baseado nas enciclopédias de Martiano Capella de Cartago e a de Cassiodório e parte dele é dirigido ao quadrivium, aritmética, música, geometria, e astronomia. O autor apresenta definições e explicações gramaticais de termos técnicos, e mais os modos de computação usados na época. Depois de Isidoro, seguiu um século de obscurantismo um pouco dissipado pela presença de Beda, o Venerável (672-735), o mais erudito homem do seu tempo. Era um nativo de Wearmouth, na Inglaterra, seus trabalhos contêm tratados sobre o Computus, ou cálculo da data da Páscoa e prática da contagem com os dedos. Parece que o simbolismo com os dedos foi então largamente usado para os cálculos. A correta determinação da data da Páscoa naqueles dias era um problema crucial para a Igreja. Tornou-se mandatório que pelo menos um monge em cada monastério soubesse calcular o dia dos festivais religiosos, bem como o calendário. Tais cálculos requerem algum conhecimento de aritmética. Portanto achamos que a arte do cálculo sempre teve um papel importante na educação dos monges.
O ano em que Beda morreu é também o ano em que Alcuíno (735- 804) nasceu. Alcuíno foi educado em York, e depois chamado à corte de Carlos Magno, que foi um grande patrono da educação, e ele próprio um homem culto. Nas grandes catedrais e monastérios criaram-se escolas nas quais eram ensinados os salmos, a escrita, o canto, o cálculo (computus) e a gramática. Por computus significa aqui, provavelmente, não meramente o cálculo da data da Páscoa, mas a arte do cálculo em geral. Exatamente o que era, não temos como saber. Não se sabe igualmente se Alcuíno estava familiarizado com os ápices de Boécio ou com o modo romano de calcular pelo ábaco. Ele pertence à extensa lista dos sábios que moldaram a teoria dos números na teologia. Assim, o número de seres criados por Deus, que criou também todas as coisas, é $6$, porque $6$ é um número perfeito (cuja soma dos seus divisores é $1 + 2 + 3 = 6$); $8$, por outro lado, é um número imperfeito $(1 + 2 + 4 < 8)$; portanto a segunda origem da humanidade vem do número 8, que é o número de almas dito ter estado na arca de Noé.
Há uma coleção de "Problemas para estimular a mente" (propositiones ad acuendos invenes), que é tão velha quanto 1000 d.C. ou talvez mais. O historiador Cantor é de opinião que foram escritos muito antes por Alcuino. O que se segue é um desses "Problemas": Um cão corre atrás de um coelho que tem uma vantagem de $50$ m, e avança por cada pulo $3$ metros, enquanto o coelho ao dar um pulo avança $2,5$ metros. Para calcular em quantos pulos o cão alcança o coelho, $50$ é dividido por $0,5$ [1]. Nessa coleção de problemas, as áreas de terras triangulares ou quadrangulares são calculadas pelas mesmas fórmulas aproximadas usadas pelos egípcios fornecidas por Boécio em sua geometria. Um antigo problema é o da "cistema" (dado o tempo em que cada uma de várias bicas podem encher uma cistema, calcular o tempo que todas juntas levariam para enchê-la), que fora previamente encontrado em Herão, na Antologia grega, e em trabalhos hindus. Muitos dos problemas indicam que a coleção foi compilada principalmente de fontes romanas. O problema que em razão de sua unicidade dá o mais positivo testemunho de sua origem romana é o da interpretação de um testamento, no caso dos dois herdeiros serem gêmeos. O problema é idêntico aos dos romanos, exceto no que diz respeito às proporções de divisão estabelecidas no testamento. Como exemplo de problemas recreativos, mencionamos o do lobo, da cabra e da couve que devem fazer a travessia de um rio em um bote que os transporte, além do seu piloto, apenas mais um dos três. Pergunta: Quais podem ir no barco em cada travessia de modo que a cabra não coma a couve e nem o lobo a cabra? As soluções dos "problemas para estimular a mente" requerem não mais conhecimento do que algumas poucas fórmulas usadas em agrimensura, a habilidade de resolver equações lineares e o domínio das quatro operações fundamentais com inteiros. Extrações de raízes em nenhuma parte eram exigidas; e frações dificilmente ocorriam.
O grande império de Carlos Magno foi ameaçado de ruir logo após a sua morte em virtude da guerra e confusão que assumiram o poder. As pesquisas científicas foram abandonadas, e não retomadas até o final do século X, quando sob o domínio saxônico na Alemanha e dos capetianos na França, surgiu mais uma época de paz e a espessa escuridão da ignorância começou a desaparecer, e o zelo com o qual o estudo de matemática foi tomado deve-se principalmente a energia e influência de um homem Gerbert, nascido em Auvergne (França). Depois de receber uma educação monástica engajou-se no estudo, principalmente de matemática na Espanha. De volta ensinou em Reims por dez anos, tornando-se notável por sua grande cultura e elevado a mais alta posição. Pelo rei Oto I e seus sucessores, foi eleito bispo do Reino, depois de Ravena, sendo por fim, eleito papa sob o nome de Silvestre II, pelo último imperador Oto III. Considerado como o maior matemático da Europa do século X. sua matemática foi considerada maravilhosa pelos seus contemporâneos. Morreu em 1003 depois de uma vida atribulada, envolvendo-se em muitas disputas políticas e religiosas, acusado de conluios criminosos com os espíritos do diabo.
Gerbert aumentou seus conhecimentos com a leitura de livros raros. Assim, em Múntua, encontrou a geometria de Boécio, e embora isto fosse de menor valor científico, possuía, contudo, uma grande importância histórica. Foi, na época, o livro principal no qual os sábios europeus podiam aprender os elementos de geometria. Gerbert estudou-o com afinco, e é aceito, em geral, que ele próprio tenha sido o autor de uma geometria. H. Weissenbonn, um historiador, nega essa teoria, e garante que o livro em questão consiste em três partes que não podem ter vindo de um mesmo e único autor. Estudos mais recentes admitem Gerbert como o autor e adiantam que ele o tenha compilado de diferentes fontes. A sua geometria contém pouco mais do que a de Boécio, mas o fato de erros ocasionais nesta última e corrigidas na de Gerbert demonstra que o autor dominara o assunto. "O primeiro texto matemático da Idade Média que merece este nome", diz Hankel, "é uma carta de Gerbert a Adalbold, bispo de Utrecht", na qual é explicada a razão porque a área de um triângulo, obtida "geometricamente" tomando-se produto da base pela metade da altura difere da área calculada "aritmeticamente", pela fórmula $\dfrac{1}{2} a (a + 1)$, usada pelos agrimensores onde $a$ representa o lado de um triângulo equilátero. A carta fornece corretamente a explanação que na última fórmula todos os pequenos quadrados, nos quais é suposto o triângulo ser dividido, são contados inteiramente, embora parte deles saia fora dos limites da figura. D. E. Smith chama a atenção para um grande jogo numérico medieval; chamado Aritmancia: suposto por alguns ser de origem grega, foi praticado até tardiamente como no século XVI. Esse jogo exige considerável habilidade aritmética, tendo sido conhecido por Gerbert, Oronce Fine, Thomas Bradwardine e outros. Um tabuleiro semelhante ao de xadrez era usado. Relações como $81=72+ \dfrac{1}{8}$ de $72$, $42 = 36 + \dfrac{1}{6}$ de $36$ eram envolvidas no jogo.
Gerbert fez um cuidadoso estudo dos trabalhos de Boécio, e ele próprio publicou o primeiro, talvez ambos, dos dois trabalhos seguintes, Um Pequeno Livro sobre Divisão de Números: e o Regras de Cálculo Para o Ábaco. Estes livros dão idéia dos métodos de cálculos praticados na Europa antes da introdução dos numerais hindus. Gerbert usou o ábaco que provavelmente não era conhecido por Alcuíno. Bernelino, um aluno de Gerbert, descreve o ábaco como consistindo em uma prancha lisa sobre a qual os geômetras estavam acostumados a espalhar areia azul para desenhar os seus diagramas. Para os propósitos aritméticos, a prancha era dividida em $30$ colunas, das quais três eram reservadas para frações enquanto as $27$ restantes, divididas em grupos com três colunas em cada. Em cada grupo, as colunas são marcadas respectivamente pelas letras C (cento), D (dez), e S (unidades) ou M (monas). Bernelino apresenta os nove numerais usados que são os ápices de Boécio, e relembra que as letras gregas podem ser empregadas nos lugar daqueles. Com a utilização das colunas, qualquer número pode ser escrito sem o zero, e todas as operações da aritmética podem ser executadas sem as colunas do mesmo modo que fazemos hoje, empregando o zero. Na verdade, os modos de adicionar, subtrair, e multiplicar em voga entre os abacistas concordam substancialmente com os de hoje. Mas para a divisão existe uma grande diferença. As primitivas regras para a divisão parecem ter sido elaboradas para satisfazerem as três seguintes condições: (1) O uso de tabelas para a multiplicação seriam restritas, pelo menos, à prática de nunca se pedir a multiplicação mental de um número de dois dígitos por outro de um dígito. (2) As substrações deveriam ser evitadas tanto quanto possível e substituídas por adição. (3) A operação deveria ser feita de modo puramente mecânico, não sujeita a tentativas. Que tais condições fossem pedidas pode nos parecer estranho; mas deve ser lembrado que os monges da Idade Média não freqüentavam a escola na infância e aprendiam a tabuada enquanto a memória estava fresca. As regras para a divisão de Gerbert são as mais antigas ainda existentes. Elas são tão lacônicas que se tornam obscuras para o não iniciado. Foram provavelmente criadas simplesmente para ajudar a memória na chamada das sucessivas etapas do trabalho. Nos manuscritos posteriores foram instituídas com mais detalhes. Na divisão de um número qualquer por outro de um algarismo digamos $668$ por $6$, o divisor era primeiro aumentado para $10$ com o acréscimo de $4$. O processo era apresentado com uma figura ao lado. Na continuação do processo, devemos imaginar os dígitos que deveriam ser cortados, apagados e substituídos pelo que estava abaixo. Seria como segue: $600\div 10 = 60$, mas para corrigir o erro, $4 \times 60$, ou $240$, deveria ser adicionado; $200 \div 10 = 20$, mas $4 \times 20$, ou $80$, adicionado. Agora, escreve-se para $60 + 40+ 80$, cuja soma é $180$, e continuava-se assim: $100 \div 10 = 10$; a correção necessária é $4 \times 10$, ou $40$, que somada a $80$, dá $120$. Novamente $100 \div 10 = 10$, e a correção $4 \times 10$, junto com $20$, resulta $60$. Procedendo como antes, $60 \div 10 = 6$; a correção é $4\times 6 = 24$. Agora $20 \div 10 = 2$, a correção passa a ser $4\times 2 = 8$. Na coluna das unidades temos aqui $8 + 4 + 8$, ou $20$. Como antes $20 \div 10 = 2$; a correção é $2 \times 4 = 8$, que não divisível por $10$, mas somente por $6$, fornecendo o quociente $1$ e o resto $2$. Todos os quocientes parciais tomados juntos fornecem $60 +20 + 10 + 10 + 6 + 2 + 2 + 1 = 111$, e o resto $2$.
Semelhante, mas mais complicado, é o processo quando o divisor é formado por dois ou mais algarismos. Quando o divisor for $27$, por exemplo, então o múltiplo mais próximo de $10$, ou $30$, deve ser tomado como divisor, mas as correções para $3$ são impostas. Aquele que tivesse paciência para levar uma tal divisão até o fim, entenderia por que se tem dito de Gerbert que "Regulas dedit, quae a sudantibus abacistis vix intelliguntur" [2]. Perceberá também por que o método de divisão árabe, quando foi introduzido, era chamado de divisio aurea, mas para o ábaco, de divisio ferrea.
Em seu livro sobre o ábaco, Bernelino separou um capítulo para frações. Estas eram, naturalmente, as duodecimais, primeiramente usadas pelos romanos. Sem uma notação adequada, o cálculo com elas era muito difícil. Mesmo para nós que estamos acostumados a lidar com frações, pela aplicação de nomes, tais como uncia para $\dfrac{1}{12}$ quincunx para $\dfrac{5}{12}$ e dodrans para $\dfrac{9}{12}$.
No século X, Gerbert foi a figura central dos sábios. No seu tempo, o Ocidente entrou na posse segura de todo o conhecimento matemático dos romanos, e durante o século XI esse saber foi estudado assiduamente. Apesar dos numerosos trabalhos que foram escritos sobre aritmética e geometria, o conhecimento matemático era ainda muito insignificante, na verdade escassos tesouros matemáticos obtidos das fontes romanas.
Notas:
[1] Está subentendido que o cão e o coelho, na corrida, executam os saltos concomitantemente. (N. T.)
[2] Estabeleceu regras que são compreendidas apenas por esforçados abacistas. (N. T.)
***
Leia mais em O que é o Quadrivium? - por Roberto Helguera
Leia mais em Boécio e Cassiodoro
Leia mais em Alcuíno de York: difusor do Trivium e Quadrivum
Leia mais em Papa Silvestre II - O Papa Matemático
Curta nossa página no Facebook Summa Mathematicae. Nossa página no Instagram @summamathematicae e YouTube.